If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=5000
We move all terms to the left:
x^2-(5000)=0
a = 1; b = 0; c = -5000;
Δ = b2-4ac
Δ = 02-4·1·(-5000)
Δ = 20000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20000}=\sqrt{10000*2}=\sqrt{10000}*\sqrt{2}=100\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100\sqrt{2}}{2*1}=\frac{0-100\sqrt{2}}{2} =-\frac{100\sqrt{2}}{2} =-50\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100\sqrt{2}}{2*1}=\frac{0+100\sqrt{2}}{2} =\frac{100\sqrt{2}}{2} =50\sqrt{2} $
| 46=37+w | | L+x=3L | | 4.9t^2-18t+7=0 | | 0.4(3x–1)=0.5x+1 | | 10x+22+13=90 | | 8j-5=-8+9j | | 9u=10u-6 | | 10-7r+6r=r-10 | | 7/4-m/9=7/36 | | P+4=8+2p | | -3+4z=3+5z | | 5x+4(x-2)=10x+2 | | -9t3=-10t | | 7+4d+6=-7-d | | -4b+10=-10b-8 | | 1/d+1/d=8 | | -2r=-r-6 | | C-5=4c+1-c | | 2+5n=9n-6 | | 7c=5c-8 | | -7m+3=-9-9m | | 9u+10=10u | | 8-4w=-2w | | 184=5y-y | | 4y−8=y−8 | | 3x+6(x-7)=3(x-12 | | 2(w+7)=2 | | 17m-15m=8 | | 2(k+2)=18 | | 2=-2(z+-2) | | 0=-3(r+6) | | 13b=11 |